页理发育型页岩储层压裂裂缝高度扩展规律Fracture height propagation laws in fracturing lamellation-developed shale reservoirs
魏旭,李革,王海涛,于艳涛,任伟,周炳存
WEI Xu,LI Ge,WANG Haitao,YU Yantao,REN Wei,ZHOU Bingcun
摘要(Abstract):
为提升古龙页岩油储层裂缝垂向扩展高度,通过耦合室内实验与矿场数据,深入剖析了页理特征、地应力场及施工参数对裂缝垂向延伸的影响机制。结果表明:页理断裂能与页理缝数量控制了裂缝的垂向扩展,低断裂能、多页理缝限制了裂缝高度,易形成“工”字形裂缝;当垂向主应力与最小水平主应力差增加到14 MPa时,裂缝穿透页理缝更容易,平均裂缝高度提升20%;施工参数中,压裂液黏度提升至15 mPa·s,平均裂缝高度提升了70%,继续提升黏度,低断裂能(小于250 Pa·m)储层中平均裂缝高度提升了15%,远大于其他断裂能条件下的6.4%;施工排量对裂缝高度的调控呈“增幅减缓”特征,高断裂能储层中缝高增量呈“先增后减”趋势。矿场试验表明,在相同地质条件下,提升压裂液黏度及单缝施工排量能显著提升压裂裂缝高度。研究成果为古龙页岩油储层压裂参数设计提供了理论与实践依据。
In order to increase the vertical fracture propagation height in Gulong shale reservoirs, influence mechanisms of lamellation characteristics, in-situ stress fields and operation parameters are deeply analyzed by coupling laboratory experiments and field data. The results show that vertical fracture propagation is controlled by lamellation fracture energy and lamellation fractures density. Low fracture energy and high lamellation fracture density constrain height growth, promoting “I-shaped” fractures. When vertical-to-minimum horizontal stress difference increases to 14 MPa, fractures are easier to penetrate through lamellation fractures, with average fracture height increased by 20%. Increasing fracturing fluid viscosity to 15 mPa·s elevates average fracture height by 70%. Further viscosity increases yield a 15% height gain in low-fracture-energy reservoirs(<250 Pa·m), significantly higher than the 6.4% observed in other conditions. Pumping displacment exhibits a “growth deceleration” effect on fracture height control, with an “increase first-then decrease” trend shown in high-fracture-energy reservoirs. Field tests indicate that under similar geological conditions, increasing fracturing fluid viscosity and single-fracture pumping displacement significantly improves fracture height. The research provides theoretical and practical reference for fracturing parameters design in Gulong shale reservoirs.
关键词(KeyWords):
古龙页岩;页理特征;施工参数;裂缝高度;压裂液黏度;断裂能
Gulong shale;lamellation characteristics;operation parameters;fracture height;fracturing fluid viscosity;fracture energy
基金项目(Foundation): 中国石油天然气股份有限公司科技项目“陆相页岩油规模增储上产与勘探开发技术研究”(2023ZZ15YJ04);; 黑龙江省重点研发计划(创新基地)项目“多资源协同陆相页岩油绿色开采全国重点实验室”(JD2023GJ02)
作者(Author):
魏旭,李革,王海涛,于艳涛,任伟,周炳存
WEI Xu,LI Ge,WANG Haitao,YU Yantao,REN Wei,ZHOU Bingcun
DOI: 10.19597/J.ISSN.1000-3754.202509037
参考文献(References):
- [1] HE W Y,ZHU R K,CUI B W,et al. The geoscience frontier of Gulong shale oil:Revealing the role of continental shale from oil generation to production[J]. Engineering,2023,28:79-92.
- [2]孙龙德,刘合,何文渊,等.大庆古龙页岩油重大科学问题与研究路径探析[J].石油勘探与开发,2021,48(3):453-463.SUN Longde,LIU He,HE Wenyuan,et al. An analysis of major scientific problems and research paths of Gulong shale oil in Daqing Oilfield, NE China[J]. Petroleum Exploration and Development,2021,48(3):453-463.
- [3]柳波,刘俊杰,付晓飞,等.松辽盆地陆相页岩油地质研究方法与勘探评价进展[J].地质与资源,2021,30(3):239-248.LIU Bo,LIU Junjie,FU Xiaofei,et al. Progress in geological research methods and exploration evaluation of continental shale oil in Songliao Basin[J]. Geology and Resources,2021,30(3):239-248.
- [4]金旭,李国欣,孟思炜,等.陆相页岩油可动用性微观综合评价[J].石油勘探与开发,2021,48(1):222-232.JIN Xu,LI Guoxin,MENG Siwei,et al. Microscale comprehensive evaluation of continental shale oil recoverability[J]. Petroleum Exploration and Development,2021,48(1):222-232.
- [5]王欣,才博,李帅,等.中国石油油气藏储层改造技术历程与展望[J].石油钻采工艺,2023,45(1):67-75.WANG Xin,CAI Bo,LI Shuai,et al. Development process and prospect of CNPC’s reservoir stimulation technologies[J]. Oil Drilling&Production Technology,2023,45(1):67-75.
- [6]邹雨时,石善志,张士诚,等.薄互层型页岩油储集层水力裂缝形态与支撑剂分布特征[J].石油勘探与开发,2022,49(5):1025-1032.ZOU Yushi,SHI Shanzhi,ZHANG Shicheng,et al. Hydraulic fracture geometry and proppant distribution in thin interbedded shale oil reservoirs[J]. Petroleum Exploration and Development,2022,49(5):1025-1032.
- [7]崔壮,侯冰,付世豪,等.页岩油致密储层一体化压裂裂缝穿层扩展特征[J].断块油气田,2022,29(1):111-117.CUI Zhuang,HOU Bing,FU Shihao,et al. Fractures cross-layer propagation characteristics of integrated fracturing in shale oil tight reservoir[J]. Fault-Block Oil&Gas Field, 2022,29(1):111-117.
- [8]侯冰,武安安,常智,等.页岩油储层多甜点压裂裂缝垂向扩展试验研究[J].岩土工程学报,2021,43(7):1322-1330.HOU Bing,WU An’an,CHANG Zhi,et al. Experimental study on vertical propagation of fractures of multi-sweet of spots shale oil reservoir[J]. Chinese Journal of Geotechnical Engineering,2021,43(7):1322-1330.
- [9]朱海燕,徐鑫勤,钟安海,等.深层页岩油水平井密切割裂缝均衡扩展数值模拟:以胜利油田YYP1井为例[J].石油与天然气地质,2022,43(1):229-240.ZHU Haiyan, XU Xinqin, ZHONG Anhai, et al. Numerical simulation of evenly propagating hydraulic fractures with smaller cluster spacing in the horizontal well YYP1 for deep shale oil in the Shengli Oilfield[J]. Oil&Gas Geology,2022,43(1):229-240.
- [10]王燚钊,侯冰,王栋,等.页岩油多储集层穿层压裂缝高扩展特征[J].石油勘探与开发,2021,48(2):402-410.WANG Yizhao, HOU Bing, WANG Dong, et al. Features of fracture height propagation in cross-layer fracturing of shale oil reservoirs[J]. Petroleum Exploration and Development, 2021,48(2):402-410.
- [11] GONG X,MA X H,LIU Y Y. Analysis of geological factors affecting propagation behavior of fracture during hydraulic fracturing shale formation[J]. Geomechanics and Geophysics for GeoEnergy and Geo-Resources,2024,10(1):102.
- [12] SHENG X C, YANG L, MEI J, et al. Experimental investigation on mechanical performance and failure modes of shale interbedded with sandstone under triaxial compression[J].Bulletin of Engineering Geology and the Environment,2022,81(7):262.
- [13]林伯韬,史璨,庄丽,等.基于真三轴实验研究超稠油储集层压裂裂缝扩展规律[J].石油勘探与开发,2020,47(3):608-616.LIN Botao, SHI Can, ZHUANG Li, et al. Study on fracture propagation behavior in ultra-heavy oil reservoirs based on true triaxial experiments[J].Petroleum Exploration and Development,2020,47(3):608-616.
- [14] ZHAO Y,ZHANG Y F,YANG H Q,et al. Experimental study on relationship between fracture propagation and pumping parameters under constant pressure injection conditions[J]. Fuel,2022,307:121789.
- [15] ZHOU W,SHI G X,WANG J B,et al. The influence of bedding planes on tensile fracture propagation in shale and tight sandstone[J]. Rock Mechanics and Rock Engineering, 2022,55(3):1111-1124.
- [16]高和群,高玉巧,何希鹏,等.苏北盆地古近系阜宁组二段页岩油储层岩石力学特征及其控制因素[J].石油与天然气地质,2024,45(2):502-515.GAO Hequn,GAO Yuqiao,HE Xipeng,et al. Rock mechanical properties and controlling factors for shale oil reservoirs in the second member of the Paleogene Funing Formation,Subei Basin[J]. Oil&Gas Geology,2024,45(2):502-515.
- [17]方正,陈勉,王溯,等.准噶尔盆地吉木萨尔凹陷页岩水平井水力压裂裂缝形态[J].新疆石油地质,2024,45(1):72-80.FANG Zheng,CHEN Mian,WANG Su,et al. Geometry of hydraulic fractures in fractured horizontal wells in shale reservoirs of Jimsar Sag, Junggar Basin[J]. Xinjiang Petroleum Geology,2024,45(1):72-80.
- [18]李紫妍,陈军斌,左海龙,等.页岩储层水力裂缝和天然裂缝交互规律[J].断块油气田,2024,31(2):232-240.LI Ziyan,CHEN Junbin,ZUO Hailong,et al. Interaction laws of hydraulic fractures and natural fractures in shale reservoirs[J]. Fault-Block Oil&Gas Field,2024,31(2):232-240.
- [19]周忠亚.纹层型页岩油储层裂缝扩展机理及工艺对策[J].特种油气藏,2023,30(6):141-149.ZHOU Zhongya. Mechanism of fracture extension and process countermeasures in grain-type shale oil reservoirs[J]. Special Oil&Gas Reservoirs,2023,30(6):141-149.
- [20] HENG S,LI X Z,LIU X,et al. Experimental study on the mechanical properties of bedding planes in shale[J]. Journal of Natural Gas Science and Engineering,2020,76:103161.
- [21]凌兴杰,陈琦,黄志强.考虑天然裂缝的页岩储集层多裂缝竞争扩展三维模拟[J].特种油气藏,2024, 31(5):136-145.LING Xingjie,CHEN Qi,HUANG Zhiqiang. Three-dimensional simulation of competitive multi-fracture propagation in shale reservoirs with consideration of natural fractures[J]. Special Oil&Gas Reservoirs,2024,31(5):136-145.
- [22]赵彦昕,陈奥阳,许文俊,等.砂-页交互陆相页岩储层水力裂缝穿层扩展规律[J].断块油气田,2024, 31(5):864-870.ZHAO Yanxin,CHEN Aoyang,XU Wenjun,et al. Cross-layer propagation law of hydraulic fractures in continental shale reservoirs with sandstone-shale interaction[J]. Fault-Block Oil&Gas Field,2024,31(5):864-870.
- [23]张伟强.渤南坳陷沙河街组页岩油藏水力裂缝穿层扩展规律研究[J].非常规油气,2024,11(2):140-146.ZHANG Weiqiang. Layer-crossing propagation law of hydraulic fracture in Shahejie Formation shale reservoir in Bonan Depression[J]. Unconventional Oil&Gas,2024,11(2):140-146.
- [24]路千里,张航,郭建春,等.基于相场法的水力裂缝扩展模拟技术现状及展望[J].天然气工业,2023,43(3):59-68.LU Qianli, ZHANG Hang, GUO Jianchun, et al. Status and prospect of hydraulic fracture propagation simulation based on phase field method[J]. Natural Gas Industry,2023,43(3):59-68.
- [25]蔡萌,唐鹏飞,魏旭,等.松辽盆地古龙页岩油复合体积压裂技术优化[J].大庆石油地质与开发,2022,41(3):156-164.CAI Meng,TANG Pengfei,WEI Xu,et al. Optimization of composite volume fracturing technology for Gulong shale oil[J].Petroleum Geology&Oilfield Development in Daqing, 2022,41(3):156-164.
- [26]雷群,翁定为,管保山,等.基于缝控压裂优化设计的致密油储集层改造方法[J].石油勘探与开发,2020,47(3):592-599.LEI Qun, WENG Dingwei, GUAN Baoshan, et al. A novel approach of tight oil reservoirs stimulation based on fracture controlling optimization and design[J]. Petroleum Exploration and Development,2020,47(3):592-599.
- [27] MUTHER T,QURESHI H A,SYED F I,et al. Unconventional hydrocarbon resources:Geological statistics,petrophysical characterization, and field development strategies[J]. Journal of Petroleum Exploration and Production Technology, 2022, 12:1463-1488.
- 古龙页岩
- 页理特征
- 施工参数
- 裂缝高度
- 压裂液黏度
- 断裂能
Gulong shale - lamellation characteristics
- operation parameters
- fracture height
- fracturing fluid viscosity
- fracture energy