基于数字岩心的古龙页岩导电规律Conductivity laws of Gulong shale based on digital cores
殷树军,张兆谦,赵海波,谢鹏,陈安琦,夏文豪
YIN Shujun,ZHANG Zhaoqian,ZHAO Haibo,XIE Peng,CHEN Anqi,XIA Wenhao
摘要(Abstract):
松辽盆地青山口组古龙页岩在含油性较好的背景下仍普遍表现出低电阻率特征,其导电规律尚不明确,制约了含油性评价的准确性。为了探究古龙页岩低电阻率现象的成因机制,基于数字岩心建模及电阻率模拟,标定有效介质导电模型中的关键渗滤参数,系统分析古龙页岩黏土含量、黏土电阻率及地层水电阻率等因素对电阻率的影响。结果表明:地层水电阻率对总体电阻率的影响有限,最大差异仅约为5Ω·m;黏土电阻率在低含水饱和度条件下作用显著,但黏土含量是主导电阻率变化的核心因素,高黏土含量显著增强附加导电性,导致电阻率大幅降低;当黏土体积分数为40%时,模拟电阻率约为6.2Ω·m,与实际测井数据吻合良好。因此,古龙页岩低电阻率现象主要由高黏土含量及其附加导电性控制。研究成果揭示了古龙页岩的导电机制,为含油性评价提供理论依据与技术支撑,对页岩油资源开发具有重要指导意义。
Gulong shale in Qingshankou Formation of Songliao Basin exhibits widespread low-resistivity characteristics despite its favorable oil-bearing properties, with unclear understanding of conductivity mechanisms which hinders the accuracy of oil-bearing evaluation. In order to explore the genesis mechanism of low-resistivity phenomenon in Gulong shale, through digital core modeling and resistivity simulation, key percolation parameters in effective medium conductivity model are calibrated to systematically analyze the influence of clay content, clay resistivity and formation water resistivity on resistivity. The results show that formation-water resistivity variation has limited impact on overall resistivity, with a maximum difference of approximately 5 Ω·m. Clay resistivity plays significant roles under low water saturation conditions, while clay content is the key factor dominating resistivity variation. High clay content significantly enhances additional conductivity, leading to a substantial reduction in resistivity. When clay content reaches 40%, the simulated resistivity is approximately 6.2 Ω·m, with good consistence with the actual logging data. Therefore, Gulong shale's low resistivity are primarily controlled by its high clay content and its additional conductivity. The research reveals conductivity mechanisms of Gulong shale and provide theoretical basis and technical support for accurate oil-bearing evaluation, being of great guiding significance for shale oil resources development.
关键词(KeyWords):
松辽盆地;青山口组;数字岩心;有效介质理论;导电规律;电阻率
Songliao Basin;Qingshankou Formation;digital core;effective medium theory;conductivity laws;resistivity
基金项目(Foundation): 新型油气勘探开发国家科技重大专项“松辽盆地白垩系陆相页岩油勘探开发技术与集成示范”(2024ZD1404902);; 中国石油天然气股份有限公司油气重大专项“陆相页岩油地球物理建模关键技术研究”(2023ZZ15YJ02)
作者(Author):
殷树军,张兆谦,赵海波,谢鹏,陈安琦,夏文豪
YIN Shujun,ZHANG Zhaoqian,ZHAO Haibo,XIE Peng,CHEN Anqi,XIA Wenhao
DOI: 10.19597/J.ISSN.1000-3754.202509044
参考文献(References):
- [1] MCMAHONT P,LARSON T E,ZHANG T,等.美国页岩油气地质特征及勘探开发进展[J].石油勘探与开发,2024,51(4):807-828.MCMAHON T P, LARSON T E, ZHANG T, et al. Geologic characteristics, exploration and production progress of shale oil and gas in the United States:An overview[J]. Petroleum Exploration and Development,2024,51(4):807-828.
- [2]孙龙德.古龙页岩油(代序)[J].大庆石油地质与开发,2020,39(3):1-7.SUN Longde. Gulong shale oil(preface)[J]. Petroleum Geology&Oilfield Development in Daqing,2020,39(3):1-7.
- [3]王广昀,王凤兰,蒙启安,等.古龙页岩油战略意义及攻关方向[J].大庆石油地质与开发,2020,39(3):8-19.WANG Guangyun,WANG Fenglan,MENG Qi’an,et al. Strategic significance and research direction for Gulong shale oil[J]. Petroleum Geology&Oilfield Development in Daqing,2020,39(3):8-19.
- [4]孙龙德,贾承造,张君峰,等.松辽盆地古龙页岩油重点地区资源潜力[J].石油学报,2024,45(12):1699-1714.SUN Longde,JIA Chengzao,ZHANG Junfeng,et al. Resource potential of Gulong shale oil in the key areas of Songliao Basin[J]. Acta Petrolei Sinica,2024,45(12):1699-1714.
- [5]赵杰,姜亦忠,俞军.低渗透储层岩电实验研究[J].大庆石油地质与开发,2004,23(2):61-63.ZHAO Jie, JIANG Yizhong, YU Jun. Experimental study on rock electrical properties of low-permeability reservoirs[J].Petroleum Geology&Oilfield Development in Daqing,2004,23(2):61-63.
- [6]白远,康胜松,云彦舒,等.基于高温岩电实验的致密砂岩储层含油饱和度解释方法研究:以鄂尔多斯盆地南部延长组长8致密储层为例[J].非常规油气,2019,6(6):68-73.BAI Yuan,KANG Shengsong,YUN Yanshu,et al. Study on interpretation method of tight sandstone reservoir saturation based on high temperature rock electricity experiment:Taking Chang 8tight reservoir in Yanchang Formation of southern Ordos Basin as an example[J]. Unconventional Oil&Gas, 2019, 6(6):68-73.
- [7]张帆,闫建平,李尊芝,等.碎屑岩阿尔奇公式岩电参数与地层水电阻率研究进展[J].测井技术,2017,41(2):127-134.ZHANG Fan,YAN Jianping,LI Zunzhi,et al. Analysis of rock electrical parameters and Rw in Archie formula for clastic rock[J]. Well Logging Technology,2017,41(2):127-134.
- [8]李霞,李潮流,李波,等.致密砂岩岩电响应规律与饱和度评价方法[J].石油勘探与开发,2020,47(1):202-212.LI Xia,LI Chaoliu,LI Bo,et al. Response laws of rock electrical property and saturation evaluation method of tight sandstone[J].Petroleum Exploration and Development,2020,47(1):202-212.
- [9]董虎,杨建国,吴国强,等.基于数字岩心技术的陆相页岩油微观结构特征及主控因素:以松辽盆地白垩系青山口组一段泥页岩为例[J].地质与资源,2021,30(3):377-384.DONG Hu,YANG Jianguo,WU Guoqiang,et al. Digital core technology-based microstructure characteristics and main controlling factors of continental shale oil:A case study of shale in Cretaceous Qingshankou Formation in Songliao Basin[J]. Geology and Resources,2021,30(3):377-384.
- [10]王敏.基于砂砾岩多组分三维数字岩心的电阻率数值模拟与影响规律分析[J].油气地质与采收率,2024,31(6):33-44.WANG Min. Resistivity numerical simulation and its influence law analysis based on multi-component 3D digital core of glutenite[J]. Petroleum Geology and Recovery Efficiency, 2024, 31(6):33-44.
- [11]张乃毓.基于数字岩心的页岩孔隙结构分析及导电性建模[D].长春:吉林大学,2023.ZHANG Naiyu. Pore structure analysis and conductivity modeling of shale based on digital core[D]. Changchun:Jilin University,2023.
- [12]闫伟林,章华兵,郑建东,等.基于数字岩心的古龙页岩油储层含油饱和度建模方法及其应用[J].大庆石油地质与开发,2022,41(3):91-102.YAN Weilin, ZHANG Huabing,ZHENG Jiandong,et al. Digital core-based modeling method and application of oil saturation in Gulong shale oil reservoir[J]. Petroleum Geology&Oilfield Development in Daqing,2022,41(3):91-102.
- [13] BERG C R. A simple effective-medium model for water saturation in porous rocks[J]. Geophysics,1995,60(4):1070-1080.
- [14] KOELMAN J M V A,DE KUIJPER A. An effective medium model for the electric conductivity of an N-component anisotropic percolating mixture[J]. Physica A,1997,247(1-4):10-22.
- [15]宋延杰,唐晓敏.低阻油层通用有效介质电阻率模型[J].中国科学D辑:地球科学,2008,38(7):896-909.SONY Yanjie, TANG Xiaomin. General effective medium resistivity model for low-resistivity oil reservoirs[J]. Science in China Series D:Earth Sciences,2008,38(7):896-909.
- [16] YAN W L,WANG C Y,YIN S J,et al. A log-based method for fine-scale evaluation of lithofacies and its applications to the Gulong shale in the Songliao Basin,Northeast China[J]. Energy Geoscience,2024,5(3):189-202.
- [17] ZHANG Z Q,ZHAO H B,YIN S J,et al. Quantitative characterization of elastic parameters and its implications for reservoir evaluation:A case study on high clay-rich continental shale[J]. Energy&Fuels,2024,38(13):11746-11762.
- [18] ZHANG Z Q,SONG Y J,YIN S J,et al. Analysis of the controlling factors for sweet spots in lacustrine shale based on core experiments and 2D NMR logging[J].Scientific Reports,2025,15(1):20440.
- [19] LI Q F,YAN X H,YAN W L,et al. Anisotropy measurements and characterization of the Qingshankou shale[J]. Applied Geophysics,2024,21(3):468-478.
- [20]田瀚,闫伟林,武宏亮,等.一种陆相页岩油岩相测井定量识别方法[J].地球物理学进展,2023,38(5):2122-2134.TIAN Han,YAN Weilin,WU Hongliang,et al. Logging quantitative identification method for lithofacies of continental shale oil[J]. Progress in Geophysics,2023,38(5):2122-2134.
- [21]陈龙川,张兆谦,郑建东,等.核磁共振测井在古龙页岩油评价中的应用[J].测井技术,2024,48(1):110-116.CHEN Longchuan,ZHANG Zhaoqian,ZHENG Jiandong,et al.Application of NMR logging in the evaluation of Gulong shale oil[J]. Well Logging Technology,2024,48(1):110-116.
- [22] ZHAO H B,ZHENG J D,ZHANG Z Q,et al. Research progress and prospects of oil saturation evaluation methods in shale oil reservoirs[J]. Processes,2024,12:2421.
- 松辽盆地
- 青山口组
- 数字岩心
- 有效介质理论
- 导电规律
- 电阻率
Songliao Basin - Qingshankou Formation
- digital core
- effective medium theory
- conductivity laws
- resistivity