大庆石油地质与开发

2025, v.44;No.232(06) 193-199

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于机器学习的页岩油产能时序预测及排采参数优化
Time-series prediction of shale oil productivity and optimization of production-drainage parameters based on machine learning

刘向斌,钱坤,张团,孙延安,卢成国,郑东志
LIU Xiangbin,QIAN Kun,ZHANG Tuan,SUN Yan'an,LU Chengguo,ZHENG Dongzhi

摘要(Abstract):

为攻克页岩油井产能预测精度不足及排采制度优化复杂的难题,通过融合多源数据特征分析,对异常数据进行归一化处理后构建样本集;随后基于随机森林与沙普利值(S_(SHAP))分析识别关键驱动特征,并以气液比、油嘴直径、井底温度为主要输入参数构建堆叠集成(Stacking)预测框架;采用交叉验证生成元特征并由线性回归实现融合,进一步结合分阶段动态优化策略,对油嘴尺寸及气液比进行联合调控,从而实现排采制度的自适应优化。结果表明:Stacking集成方法在测试集上表现最优,决定系数(R~2)为0.927 0,平均绝对误差(B_(MAE))为0.266 5,明显优于各单一模型,邻井验证显示其泛化能力稳定可靠;经动态调整优化后,见油放产和衰减阶段的累计产油量分别提升17.88%和11.16%。研究成果可为页岩油井排采制度优化策略制定提供有力支撑,有效提升产能预测精度与排采效率。
To address the challenges of insufficient accuracy in shale oil well productivity prediction and the complexity of production-drainage system optimization, a normalized sample dataset is constructed after processing abnormal data by integrating multi-sources data characteristics analysis. Key driving features are then identified through random forest and Shapley value(S_(SHAP)) analysis, and a Stacking ensemble prediction framework is established with gas-liquid ratio, choke diameter and bottom hole temperature as primary input parameters. Meta-features are generated via cross-validation and integrated through linear regression. A staged dynamic optimization strategy is subsequently applied to jointly regulate choke diameter and gas-liquid ratio, achieving adaptive production-drainage optimization. The results show that Stacking ensemble method achieves optimal performance on test set, with a determination coefficient(R~2) of 0.927 0 and mean absolute error(B_(MAE)) of 0.266 5, significantly outperforming individual models. Validation of adjacent wells demonstrates stable and reliable generalization capability. After dynamic adjustment optimization, cumulative oil production during oil breakthrough and decline stages increased by 17.87% and 11.16%, respectively. The research provides support for formulating shale oil well production-drainage optimization strategies, effectively improving productivity prediction accuracy and drainage efficiency.

关键词(KeyWords): 页岩油;产能预测;机器学习;Stacking模型;排采优化
shale oil;productivity prediction;machine learning;Stacking model;production-drainage optimization

Abstract:

Keywords:

基金项目(Foundation): 中国石油天然气集团有限公司科技项目“陆相页岩油规模增储上产与勘探开发技术研究”(2023ZZ15YJ04)

作者(Author): 刘向斌,钱坤,张团,孙延安,卢成国,郑东志
LIU Xiangbin,QIAN Kun,ZHANG Tuan,SUN Yan'an,LU Chengguo,ZHENG Dongzhi

DOI: 10.19597/J.ISSN.1000-3754.202509055

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享