基于老井样品的页岩油可动性评价方法——以松辽盆地青山口组为例A method for evaluating shale oil mobility based on old well samples: A case study of Qingshankou Formation in Songliao Basin
李浩涵,张聪,徐兴友,陈维堃,白静,张远
LI Haohan,ZHANG Cong,XU Xingyou,CHEN Weikun,BAI Jing,ZHANG Yuan
摘要(Abstract):
针对现有评价方法在老井页岩油储层可动性分析中存在适用性不足的问题,以松辽盆地青山口组老井页岩样品为研究对象,提出一种结合逐温干燥实验与T_1-T_2谱核磁共振技术的评价方法。首先通过逐温干燥实验,依托核磁共振T_1-T_2谱精准还原孔隙中水分的动态流失过程;随后将样品干燥温度控制在80℃以模拟实际地层温度下的孔隙环境,进而量化游离水在孔隙中的侵占程度;在此模拟条件下,开展饱和油、离心、核磁共振系列实验,实现对页岩油可动性的系统评价。结果表明:与传统60℃标准干燥温度相比,80℃地层温度干燥条件下样品的可动孔隙度平均提升0.54%;干燥过程中结构水含量保持稳定、游离水含量显著降低,进一步验证了80℃及更高干燥温度在实验中的有效性;评价结果显示,JYY1井页岩油可动油量为1.18~1.60 mg/g,可动率为13.33%~19.45%,SYY1井、SYY2井页岩油可动油量为3.11~4.59 mg/g,可动率为11.11%~14.92%,结果均处于合理区间。对比而言,传统评价方法得出的页岩油可动率为5.82%~25.38%,数据波动超出合理范围,充分证明本文方法能够更精准、合理地实现老井页岩油可动性评价,为老井页岩油资源潜力评估提供可靠技术支撑。
Aiming at the problem of insufficient adaptability of existing evaluation methods in analyzing shale oil mobility in old wells, an evaluation approach combining stepwise-temperature drying experiments and T_1-T_2 spectra nuclear magnetic resonance(NMR) is proposed using shale samples from Qingshankou Formation in Songliao Basin as research object. Firstly, stepwise-temperature drying experiments are conducted to precisely reconstruct dynamic water loss process in pores based on T_1-T_2 nuclear magnetic resonance(NMR) spectra. Then, samples drying-temperatures are controlled at 80 ℃ to simulate the actual reservoir temperature, thereby quantifying the occupation degree of free water in the pores. Under these simulated conditions, a series of oil saturation,centrifugation and NMR experiments are carried out to systematically evaluate shale oil mobility. The results show that, compared with the conventional standard of 60 ℃, samples dried at 80 ℃ exhibit an average increase of 0.54% in movable porosity. During the drying process, structural water content remains stable, while free water content decreases significantly, further verifying the effectiveness of drying at 80 ℃ and higher temperatures in the experiment. The evaluation results show that movable oil content in Well JYY1 is 1.18-1.60 mg/g, with mobility rate of 13.33%-19.45%. Movable oil contents in Well SYY1 and Well SYY2 are 3.11-4.59 mg/g, with mobility rate of 11.11%-14.92%(all within reasonable range). In contrast, conventional evaluation methods yield mobility rate of 5.82%-25.38%, with data fluctuation exceeding reasonable range, which fully demonstrates that the proposed method can achieve more precise and reasonable mobility evaluation of shale oil in old wells, providing reliable technical support for assessing shale oil resource potential in old wells.
关键词(KeyWords):
页岩油可动性;评价方法;松辽盆地;青山口组
shale oil mobility;evaluation method;Songliao Basin;Qingshankou Formation
基金项目(Foundation): 国家自然科学基金青年项目“薄纹层成因机制及其对陆相页岩储集空间的控制作用”(42302177);国家自然科学基金项目“中扬子古隆起周缘震旦―寒武系页岩气源储耦合演化及保存机理”(U2244208);; 中国地质调查局地质调查项目“华北地台及其周缘页岩油气地质调查与评价”(DD20240050)
作者(Author):
李浩涵,张聪,徐兴友,陈维堃,白静,张远
LI Haohan,ZHANG Cong,XU Xingyou,CHEN Weikun,BAI Jing,ZHANG Yuan
DOI: 10.19597/J.ISSN.1000-3754.202509061
参考文献(References):
- [1]胡素云,赵文智,侯连华,等.中国陆相页岩油发展潜力与技术对策[J].石油勘探与开发,2020,47(4):819-828.HU Suyun,ZHAO Wenzhi,HOU Lianhua,et al. Development potential and technical strategy of continental shale oil in China[J]. Petroleum Exploration and Development,2020,47(4):819-828.
- [2]包书景,葛明娜,徐兴友,等.我国陆相页岩油勘探开发进展与发展建议[J].中国地质,2023,50(5):1343-1354.BAO Shujing, GE Mingna, XU Xingyou, et al. Progress and development proposals in the exploration and development of continental shale oil in China[J]. Geology in China, 2023, 50(5):1343-1354.
- [3]李阳,赵清民,吕琦,等.中国陆相页岩油开发评价技术与实践[J].石油勘探与开发,2022,49(5):955-964.LI Yang,ZHAO Qingmin,L??Qi,et al. Evaluation technology and practice of continental shale oil development in China[J].Petroleum Exploration and Development,2022,49(5):955-964.
- [4]马永生,蔡勋育,赵培荣,等.中国陆相页岩油地质特征与勘探实践[J].地质学报,2022,96(1):155-171.MA Yongsheng,CAI Xunyu,ZHAO Peirong,et al. Geological characteristics and exploration practices of continental shale oil in China[J]. Acta Geologica Sinica,2022,96(1):155-171.
- [5]邹才能,马锋,潘松圻,等.全球页岩油形成分布潜力及中国陆相页岩油理论技术进展[J].地学前缘,2023,30(1):128-142.ZOU Caineng,MA Feng,PAN Songqi,et al. Formation and distribution potential of global shale oil and the developments of continental shale oil theory and technology in China[J]. Earth Science Frontiers,2023,30(1):128-142.
- [6]覃建华,李映艳,杜戈峰,等.基于核磁共振测井的页岩油产能分析及甜点评价[J].新疆石油地质,2024,45(3):317-326.QIN Jianhua, LI Yingyan, DU Gefeng, et al. NMR loggingbased productivity analysis and sweet spot evaluation for shale oil[J]. Xinjiang Petroleum Geology,2024,45(3):317-326.
- [7]何梦卿,吴珂.基于核磁共振驱替技术的页岩含油性评价[J].石油化工应用,2017,36(11):83-86.HE Mengqing,WU Ke. Evaluation of shale oil based on NMR displacement technology[J]. Petrochemical Industry Application,2017,36(11):83-86.
- [8] LI J B,HUANG W B, LU S F,et al. Nuclear magnetic resonance T1-T2 map division method for hydrogen-bearing components in continental shale[J]. Energy&Fuels, 2018, 32(9):9043-9054.
- [9]丁娱娇,李俊国,朱伟峰,等. T1-T2二维核磁共振页岩油储集层含油性检测方法[J].录井工程,2020,31(增刊1):48-53.DING Yujiao,LI Junguo,ZHU Weifeng,et al. T1-T2 two-dimensional NMR method for detecting oil-bearing property in shale oil reservoirs[J]. Mud Logging Engineering, 2020, 31(S1):48-53.
- [10]张水昌,张斌,王晓梅,等.松辽盆地古龙页岩油富集机制与常规-非常规油有序分布[J].石油勘探与开发,2023,50(5):911-923.ZHANG Shuichang, ZHANG Bin, WANG Xiaomei, et al.Gulong shale oil enrichment mechanism and orderly distribution of conventional-unconventional oil in the Cretaceous Qingshankou Formation,Songliao Basin,NE China[J]. Petroleum Exploration and Development,2023,50(5):911-923.
- [11] CHEN P J. Paleoenvironmental changes during the Cretaceous in eastern China[J]. Developments in Palaeontology and Stratigraphy,2000,17(C):81-90.
- [12]孟庆涛,胡菲,刘招君,等.陆相坳陷湖盆细粒沉积岩岩相类型及成因:以松辽盆地晚白垩世青山口组为例[J].吉林大学学报(地球科学版),2024,54(1):20-37.MENG Qingtao,HU Fei,LIU Zhaojun,et al. Lithofacies types and genesis of fine-grained sediments in terrestrial depression lake basin:Taking upper Cretaceous Qingshankou Formation in Songliao Basin as an example[J]. Journal of Jilin University(Earth Science Edition),2024,54(1):20-37.
- [13]白静,徐兴友,陈珊,等.松辽盆地长岭凹陷乾安地区青山口组一段沉积相特征与古环境恢复:以吉页油1井为例[J].中国地质,2020,47(1):220-235.BAI Jing,XU Xingyou,CHEN Shan,et al. Sedimentary characteristics and paleo-environment restoration of the first member of Qingshankou Formation in Qian’an area,Changling sag,Songliao Basin:A case study of Jiyeyou 1 Well[J]. Geology in China,2020,47(1):220-235.
- [14] HU T,PANG X Q,JIANG F J,et al. Movable oil content evaluation of lacustrine organic-rich shales:Methods and a novel quantitative evaluation model[J]. Earth-Science Reviews, 2021,214:103545.
- [15] CROUSSE L,GARCIA A P,SUN B Q,et al. A novel workflow based on core and well-log T1T2 NMR measurement for improvement field scale assessment of fluid volume in shale and tight reservoirs[C]. Texas:SPWLA 64th Annual Logging Symposium,2023.
- [16]闫伟林,张兆谦,陈龙川,等.基于核磁共振技术的古龙页岩含油饱和度评价新方法[J].大庆石油地质与开发,2021,40(5):78-86.YAN Weilin,ZHANG Zhaoqian,CHEN Longchuan,et al. New evaluating method of oil saturation in Gulong shale based on NMR technique[J]. Petroleum Geology&Oilfield Development in Daqing,2021,40(5):78-86.
- [17] LI J B,JIANG C Q,WANG M,et al. Adsorbed and free hydrocarbons in unconventional shale reservoir:A new insight from NMR T1-T2 maps[J]. Marine and Petroleum Geology, 2020,116:104311.
- [18]何文渊,柳波,张金友,等.松辽盆地古龙页岩油地质特征及关键科学问题探索[J].地球科学,2023,48(1):49-62.HE Wenyuan,LIU Bo,ZHANG Jinyou,et al. Geological characteristics and key scientific and technological problems of Gulong shale oil in Songliao Basin[J]. Earth Science,2023,48(1):49-62.
- [19]徐兴友,刘卫彬,白静,等.松辽盆地南部青山口组一段页岩油富集地质特征及资源潜力[J].地质与资源,2021,30(3):296-305.XU Xingyou,LIU Weibin,BAI Jing,et al. Enrichment characteristics and resource potential of shale oil in the first member of Qingshankou Formation in southern Songliao Basin[J]. Geology and Resources,2021,30(3):296-305.
- [20]张金旭,王有智,陈绪强,等.川东北地区侏罗系凉高山组页岩储层地质特征及页岩油气勘探潜力[J].大庆石油地质与开发,2025,44(2):38-49.ZHANG Jinxu,WANG Youzhi,CHEN Xuqiang,et al. Geological characteristics of shale reservoirs and exploration potential of shale oil and gas in Jurassic Lianggaoshan Formation of northeastern Sichuan Basin[J]. Petroleum Geology&Oilfield Development in Daqing,2025,44(2):38-49.