低渗透裂缝型油藏“动态缝”建模数模一体化技术及其应用Technology and application of integrated “dynamic fracture” modeling and numerical simulation for low-permeability fractured reservoirs
向传刚,杨桂南,吴丽芳,郑景荣,骆雯
XIANG Chuan'gang,YANG Guinan,WU Lifang,ZHENG Jingrong,LUO Wen
摘要(Abstract):
低渗透裂缝型油藏在长期注水过程中容易形成诱导缝,在“动态缝”的作用下平面易多方向见水,水驱前缘及剩余油分布趋于复杂,现有建模数模技术无法表征。针对裂缝型油藏“动态缝”预测及剩余油精准刻画难的问题,以四维应力场模拟为基础,通过“人工裂缝正演模拟+井间应变伴生缝预测”的“动态缝”地质建模、“实体缝+应力敏感”为核心的微米级“动态缝”油藏数值模拟技术,实现开发全过程有效裂缝组系预测及剩余油精准刻画。该技术在大庆外围某油田典型区块的应用结果表明,“动态缝”建模数模技术可使单井含水率拟合率提高5~10百分点,全区综合含水率符合率达到90%以上,实现了开发全过程的动态裂缝系统全程跟踪预测,精细刻画了储层“裂缝干扰型”剩余油的分布。研究成果对低渗透裂缝型油藏中后期的开发调整和措施挖潜具有重要的指导意义。
Low-permeability fractured reservoirs may form induced fractures during long-term water injection. Under the action of “dynamic fractures”, water flows areally in several directions, water flooding front and remaining oil distribution tend to be complex and current modeling and simulation techniques cannot characterize. To address the challenge of “dynamic fractures” prediction and accurate remaining oil characterization, based on four-dimensional stress field simulation,“ dynamic fractures” geological modeling with“forward modeling of hydraulic fractures+interwell strain associated fractures prediction” and reservoir numerical simulation for micrometer-level “dynamic fractures” focused on “solid fractures+stress sensitivity” are implemented to realize whole-process effective fractures system prediction and precise remaining oil characterization.Application in a typical block in a peripheral oilfield in Daqing shows that the “dynamic fractures” modeling and numerical simulation technique improves matching rate of single-well water cut by 5~10 percentage points, achieving comprehensive water cut coincidence rate of over 90% for the whole area. This technique enables tracking and prediction of dynamic fractures system throughout the development process and provides detailed characterization of distribution of“ fracture interfered” remaining oil in reservoirs. The research has significant guiding implications for development adjustments and potential tapping measures in middle to late stage of low-permeability fractured reservoirs.
关键词(KeyWords):
低渗透裂缝型油藏;动态缝;“四维”应力场;正演模拟;应变伴生缝;剩余油
low-permeability fractured reservoirs;dynamic fracture;“four-dimensional” stress field;forward modeling;strain associated fracture;remaining oil
基金项目(Foundation): 国家重点研发计划“利用大型油气藏埋存二氧化碳关键技术标准研究与应用”(2023YFF0614100);; 中国石油天然气股份有限公司重大科技专项“特低渗/致密油转变开发方式关键技术研究”(2023ZZ17YJ03)
作者(Author):
向传刚,杨桂南,吴丽芳,郑景荣,骆雯
XIANG Chuan'gang,YANG Guinan,WU Lifang,ZHENG Jingrong,LUO Wen
DOI: 10.19597/J.ISSN.1000-3754.202504048
参考文献(References):
- [1]胡文瑞,魏漪,鲍敬伟.中国低渗透油气藏开发理论及技术进展[J].石油勘探与开发,2018,45(4):1-11.HU Wenrui,WEI Yi,BAO Jingwei. Development of the theory and technology for low permeability reservoirs in China[J].Petroleum Exploration and Development,2018,45(4):1-11.
- [2]黄勇,杨会东,李艳春,等.油田密井网条件下井震匹配构造表征技术及应用[J].中国石油大学学报(自然科学版),2023,47(4):60-68.HUANG Yong,YANG Huidong,LI Yanchun,et al. Structure characterization technology and application of well seismic matching under dense well pattern in oilfield[J]. Journal of China University of Petroleum(Edition of Sciences),2023,47(4):60-68.
- [3]何伟,马世忠,袁江如,等.致密油储层不同尺度、多重介质建模方法研究:以吉木萨尔凹陷芦草沟组上甜点为例[J].地球物理学进展,2017,32(2):618-625.HE Wei,MA Shizhong,YUAN Jiangru,et al. Modeling method of the multi-scale and multiple medium unconventional tight oilreservoir:A case study of the upper reservoir in Lucaogou Formation of Junggar Basin[J]. Progress in Geophysics, 2017, 32(2):618-625.
- [4]白振国,姜雪岩,杨光耀,等.大庆油田水驱开发技术及其发展方向[J].大庆石油地质与开发,2024,43(4):25-33.BAI Zhenguo,JIANG Xueyan,YANG Guangyao,et al. Water flooding development technology in Daqing Oilfield and its development direction[J]. Petroleum Geology&Oilfield Development in Daqing,2024,43(4):25-33.
- [5]沙宗伦,苗志国,迟博,等.大庆外围油田开发技术进步与展望[J].大庆石油地质与开发,2024,43(3):165-171.SHA Zonglun,MIAO Zhiguo,CHI Bo,et al. Progress and prospects of development technology for Daqing peripheral oilfields[J]. Petroleum Geology&Oilfield Development in Daqing,2024,43(3):165-171.
- [6]孙贻铃,王秀娟.朝阳沟油田构造裂缝及其有效性研究[J].大庆石油地质与开发,2005,24(1):33-38.SUN Yiling, WANG Xiujuan. Research Structural fractures and their effectiveness of Chaoyanggou Oilfield[J]. Petroleum Geology&Oilfield Development in Daqing,2005,24(1):33-38.
- [7]庞彦明,周永炳,刘传平,等.外围油田综合油藏描述与评价优选技术[J].大庆石油地质与开发,2009,28(5):119-125.PANG Yanming,ZHOU Yongbing,LIU Chuanping,et al. Integral reservoir description,evaluation and optimization technology for peripheral reservoirs[J]. Petroleum Geology&Oilfield Development in Daqing,2009,28(5):119-125.
- [8]王强,王玉丰,梁升平,等.低渗储层关井后水力裂缝二次扩展规律[J].石油钻采工艺,2023,45(5):597-606.WANG Qiang, WANG Yufeng, LIANG Shengping, et al.Secondary propagation of hydraulic fracture in low-permeability reservoir after shut-in[J]. Oil Drilling&Production Technology,2023,45(5):597-606.
- [9]徐永,陈立超,杨补旺,等.致密砂岩裂缝时空演化特征规律[J].世界石油工业,2024,31(5):73-82.XU Yong,CHEN Lichao,YANG Buwang,et al. Temporal and spatial evolution characteristics of tight sandstone fractures[J].World Petroleum Industry,2024,31(5):73-82.
- [10]杜书恒,师永民,关平.松辽盆地扶余低渗非均质储层压裂缝定量预测[J].地学前缘,2017,19(2):1-17.DU Shuheng, SHI Yongmin, GUAN Ping. Quantitative prediction of the fracture in Fuyu heterogeneous low permeability reservoir in Songliao Basin[J]. Earth Science Frontiers,2017,19(2):1-17.
- [11]向传刚,迟博,付志国,等.渗透率确定方法、表征方法及装置、电子设备和存储介质:202110093321.0[P].2023-04-11.XIANG Chuan’gang,CHI Bo,FU Zhiguo,et al. Determination method, characterization method and device, electronic equipment and storage medium for permeability:202110093321.0[P].2023-04-11.
- [12]张景和,孙宗颀.地应力、裂缝测试技术在石油勘探开发中的应用[M].北京:石油工业出版社,2001.ZHANG Jinghe, SUN Zongqi. The application of in-situ stress and fracture testing techniques in petroleum exploration and development[M]. Beijing:Petroleum Industry Press,2001.
- [13] GU H,WENG X. Criterion for fractures crossing frictional interfaces at non-orthogonal angles[C]. Salt Lake City:44th U.S.Rock Mechanics Symposium and 5th U.S.-Canada Rock Mechanics Symposium,2010.
- [14]程万,金衍,陈勉,等.三维空间中水力裂缝穿透天然裂缝的判别准则[J].石油勘探与开发,2014, 41(3):336-342.CHENG Wan, JIN Yan, CHEN Mian, et al. A criterion for identifying hydraulic fractures crossing natural fractures in 3D space[J].Petroleum Exploration and Development,2014,41(3):336-342.
- [15]向传刚,迟博.基于岩石力学及压裂施工参数计算的复杂缝网建模[J].大庆石油地质与开发,2018,37(5):153-159.XIANG Chuan’gang, CHI Bo.Modeling of the complex network based on the rock mechanics and fracturing operation parameter calculation[J]. Petroleum Geology&Oilfield Development in Daqing,2018,37(5):153-159.
- [16] CHUPRAKOV D A, AKULICH A V, SIEBRITS E, et al.Hydraulic fracture propagation in a naturally fractured reservoir[R]. SPE 128715,2010.
- [17]凌兴杰,陈琦,黄志强,等.考虑天然裂缝的页岩储集层多裂缝竞争扩展三维模拟[J].特种油气藏,2024,31(5):136-145.LING Xingjie, CHEN Qi, HUANG Zhiqiang, et al. Three-dimensional simulation of competitive multi-fracture propagation in shale reservoirs with consideration of natural fractures[J].Special Oil&Gas Reservoirs,2024,31(5):136-145.
- [18]唐圣来.基于嵌入式多尺度裂缝模型的地质建模方法及应用[J].特种油气藏,2023,30(1):36-40.TANG Shenglai. Geological modeling method and its application based on embedded multi-scale fracture model[J]. Special Oil&Gas Reservoirs,2023,30(1):36-40.
- [19]翁定为,魏然,孙强,等.水力压裂裂缝监测技术综述[J].世界石油工业,2024,31(6):66-76.WENG Dingwei,WEI Ran,SUN Qiang,et al. Review on fracturing monitoring technology[J]. World Petroleum Industry,2024,31(6):66-76.
- [20]王贤君,胡智凡,张洪涛,等.大庆外围低渗透油田直井多分支缝压裂提产技术[J].石油钻采工艺,2022,44(5):632-636.WANG Xianjun,HU Zhifan,ZHANG Hongtao,et al. Technology of production enhancement by fracturing of multiple branch fracture in vertical well in low permeability oilfields in the periphery of Daqing[J]. Oil Drilling&Production Technology,2022,44(5):632-636.
- [21]刘合,孟思炜,王素玲,等.古龙页岩力学特征与裂缝扩展机理[J].石油与天然气地质,2023,44(4):820-828.LIU He,MENG Siwei,WANG Suling,et al. Mechanical characteristics and fracture propagation mechanisms of the Gulong shale[J]. Oil&Gas Geology,2023,44(4):820-828.
- [22]冯建伟,戴俊生,马占荣,等.低渗透砂岩裂缝参数与应力场关系理论模型[J].石油学报,2011,32(4):664-669.FENG Jianwei,DAI Junsheng,MA Zhanrong,et al. The theoretical model between fracture parameters and stress field of lowpermeability sandstones[J]. Acta Petrolei Sinica, 2011, 32(4):664-669.
- 低渗透裂缝型油藏
- 动态缝
- “四维”应力场
- 正演模拟
- 应变伴生缝
- 剩余油
low-permeability fractured reservoirs - dynamic fracture
- “four-dimensional” stress field
- forward modeling
- strain associated fracture
- remaining oil