基于分子模拟的页岩油气多相赋存机理Multiphase occurrence mechanism of shale oil and gas based on molecular simulation
屈洋,余曹,杨洋,于海生,王青振,康鑫
QU Yang,YU Cao,YANG Yang,YU Haisheng,WANG Qingzhen,KANG Xin
摘要(Abstract):
无机矿物作为页岩油层主要成分,是油气吸附的重要载体,因此研究油气在无机纳米孔隙中的赋存机理十分重要。采用分子模拟技术,通过构建页岩无机矿物和油气分子模型,剖析页岩油气的多相赋存机制,模拟不同温度、压力条件下甲烷、戊烷、癸烷、十五烷等油气分子与二氧化硅矿物表面的相互作用。结果表明:低温下分子扩散慢,有利于吸附平衡,高温下以解吸为主,温度越高,流体与矿物表面之间的范德华力越小,越有利于流体解吸脱附,从而提高油气藏动用程度;高压下分子间距减小,页岩油分子与页岩固体表面的范德华作用增强,导致页岩油吸附量显著增加;轻烃分子可动率大于重烃分子,当孔隙直径增加到12 nm时,小分子烷烃(C_1、C_5)动用率可达到约80%,而长链烷烃(C_(10)、C_(15))只能达到约60%。研究成果可为页岩油气藏储量评估、开采方案优化提供理论支撑。
Inorganic minerals, as the main component of shale oil reservoirs, are important carriers for hydrocarbon adsorption. Therefore, it is crucial to study the occurrence mechanism of oil and gas in inorganic nanopores. Molecular simulation technology is used to construct models of shale inorganic minerals and hydrocarbon molecules, analyzing the multiphase occurrence mechanism of shale oil and gas. Interaction between hydrocarbon molecules such as methane, pentane, decane and pentadecane and the surface of silica minerals is simulated in conditions of different temperatures and pressures. The results show that molecular diffusion is slow at low temperatures, which is conducive to adsorption equilibrium, while desorption dominates at high temperatures. The higher the temperature, the smaller the van der Waals force between the fluid and mineral surface, which is conducive to fluid desorption and desorption, and improves the producing degree of oil and gas reservoirs. Under high pressure, the molecular spacing decreases, and the van der Waals interaction between shale oil molecules and shale solid surfaces is enhanced, resulting in a significant increase in shale oil adsorption capacity. The productivity of light hydrocarbon molecules is higher than that of heavy hydrocarbon molecules. When pore size increases to 12 nm, the productivity of small molecule alkanes(C_1, C_5) is up to about 80%, while long-chain alkanes(C_(10), C_(15)) only reach 60%. The research provides theoretical support for reserves evaluation and production plans optimization of shale oil and gas reservoirs.
关键词(KeyWords):
分子模拟;烷烃;吸附;二氧化硅;页岩油;密度分布
molecular simulation;alkanes;adsorption;SiO_2;shale oil;density distribution
基金项目(Foundation): 国家自然科学基金联合基金项目“中高熟陆相页岩油富集理论与绿色有效开发基础研究”(U24B6004);; 国家科技重大专项“松辽盆地白垩系陆相页岩油勘探开发技术与集成示范”(2024ZD1404904);; 黑龙江省重点研发计划(创新基地)项目“多资源协同陆相页岩油绿色开采全国重点实验室”(JD2023GJ02);; 中国石油大庆油田有限责任公司科技项目“凉高山组页岩油有效开发技术研究”(25DQYTSG004-16-05)
作者(Author):
屈洋,余曹,杨洋,于海生,王青振,康鑫
QU Yang,YU Cao,YANG Yang,YU Haisheng,WANG Qingzhen,KANG Xin
DOI: 10.19597/J.ISSN.1000-3754.202509029
参考文献(References):
- [1] TIAN J,ZHANG Y F,ZUO X Q,et al. Effect of alkane adsorption on the electrochemical properties of graphene[J]. Journal of Materials Chemistry A,2024,12(31):20378-20385.
- [2] YANG Y F,SONG H S,IMANI G,et al. Adsorption behavior of shale oil and water in the kerogen-kaolinite pore by molecular simulations[J]. Journal of Molecular Liquids, 2024, 393:123549.
- [3]张雪龄,谷军恒,叶强,等.分子模拟技术在页岩油气吸附和流动特性研究中的应用进展[J].中国海上油气,2023,35(3):103-115.ZHANG Xueling, GU Junheng, YE Qiang, et al. Application progress of molecular simulation technology in the study of adsorption and flow characteristics of shale oil and gas[J].China Offshore Oil and Gas,2023,35(3):103-115.
- [4]李美俊,刘晓强,韩秋雅,等.分子模拟在油气地球化学中的应用研究进展[J].石油与天然气地质,2021,42(4):919-930.LI Meijun,LIU Xiaoqiang,HAN Qiuya,et al. Progress of molecular simulation application research in petroleum geochemistry[J].Oil&Gas Geology,2021,42(4):919-930.
- [5]卢双舫,沈博健,许晨曦,等.利用GCMC分子模拟技术研究页岩气的吸附行为和机理[J].地球科学,2018,43(5):1783-1791.LU Shuangfang,SHEN Bojian,XU Chenxi,et al. Study on adsorption behavior and mechanism of shale gas by using GCMC molecular simulation[J]. Journal of Earth Science, 2018,43(5):1783-1791.
- [6]吕兆兰,宁正福,王庆,等.甲烷在页岩黏土矿物中吸附行为的分子模拟[J].煤炭学报,2019,44(10):3117-3124.L??Zhaolan, NING Zhengfu, WANG Qing, et al. Molecular simulation of methane adsorption behavior on clay minerals in shale[J]. Journal of China Coal Society, 2019, 44(10):3117-3124.
- [7]叶洪涛,宁正福,王庆,等.页岩储层自发渗吸实验及润湿性研究[J].断块油气田,2019,26(1):84-87.YE Hongtao,NING Zhengfu,WANG Qing,et al. Spontaneous imbibition experiment and wettability of shale reservoir[J].Fault-Block Oil&Gas Field,2019,26(1):84-87.
- [8]黄亮,徐侦耀,陈秋桔,等.页岩变形干酪根中甲烷吸附-解吸特征分子模拟[J].石油与天然气地质,2025,46(3):995-1005.HUANG Liang, XU Zhenyao, CHEN Qiujie, et al. Molecular simulation of methane adsorption/desorption characteristics of deformed kerogen in shales[J]. Oil&Gas Geology, 2025,46(3):995-1005.
- [9]张欢,柴昊楠,赵洪宝,等.重质烷烃对页岩中CO2与CH4竞争吸附的影响机制[J].油气藏评价与开发,2025,15(4):579-588.ZHANG Huan,CHAI Haonan,ZHAO Hongbao,et al. Mechanism of heavy alkane influence on CO2 and CH4 competitive adsorption in shale[J]. Petroleum Reservoir Evaluation and Development,2025,15(4):579-588.
- [10]王民,余昌琦,费俊胜,等.页岩油在干酪根中吸附行为的分子动力学模拟与启示[J].石油与天然气地质,2023,44(6):1442-1452.WANG Min,YU Changqi,FEI Junsheng,et al. Molecular dynamics simulation of shale oil adsorption in kerogen and its implications[J]. Oil&Gas Geology,2023,44(6):1442-1452.
- [11]余曹,张玉苹,汪周华,等.页岩矿物不同润湿性表征与吸附微观机理[J].原子与分子物理学报,2024,41(2):35-44.YU Cao, ZHANG Yuping, WANG Zhouhua, et al. The influence of mineral wettability on the adsorption of shale gas[J].Journal of Atomic and Molecular Physics, 2024, 41(2):35-44.
- [12]熊健,刘向君,梁利喜,等.甲烷在蒙脱石狭缝孔中吸附行为的分子模拟[J].石油学报,2016,37(8):1021-1029.XIONG Jian,LIU Xiangjun,LIANG Lixi,et al. Molecular simulation on the adsorption behaviors of methane in montmorillonite slit pores[J].Acta Petrolei Sinica,2016,37(8):1021-1029.
- [13]杨琴,黄亮,周文,等.深层页岩伊利石孔隙中甲烷吸附相密度特征[J].断块油气田,2023,30(5):799-807.YANG Qin, HUANG Liang, ZHOU Wen, et al. Adsorption phase density characteristics of methane in illite pores of deep shale[J]. Fault-Block Oil&Gas Field, 2023, 30(5):799-807.
- [14]许嘉楠,李强,秦玉才,等.TON分子筛上丁烷异构体吸附行为的分子模拟[J].石油炼制与化工,2022, 53(11):46-53.XU Jia’nan,LI Qiang,QIN Yucai,et al. Molecular simulation of adsorption behavior of butane isomers on TON molecular sieve[J].Petroleum Processing and Petrochemicals,2022,53(11):46-53.
- [15]唐瑜佞,王勋,彭俊洁,等.低碳烷烃烯烃在超微孔柔性Cu(Qc)2上的吸附行为[J].化工学报,2021, 72(11):5664-5674.TANG Yuning, WANG Xun, PENG Junjie, et al. Adsorption behavior of light alkanes/alkenes on ultramicroporous flexible Cu(Qc)2[J]. Journal of Chemical Industry and Engineering(China),2021,72(11):5664-5674.
- [16]任中俊,吴泰星,郜世才.甲烷在暗色页岩纳米孔隙中微观吸附规律[J].天然气地球科学,2022,33(12):1926-1935.REN Zhongjun,WU Taixing,GAO Shicai,et al. Study on adsorption characteristics of methane in mud shale nanopores by nano-mechanics simulation[J]. Natural Gas Geoscience,2022,33(12):1926-1935.
- [17]曾克成,姜培学,张富珍,等.方解石纳米孔隙内二氧化碳毛细凝聚的分子模拟[J].工程热物理学报,2021,42(1):203-209.ZENG Kecheng,JIANG Peixue,ZHANG Fuzhen,et al. Molecular simulation of carbon dioxide capillary condensation in nanopores[J]. Journal of Engineering Thermophysics, 2021,42(1):203-209.
- [18] WANG Z H,YU C,ZHAO J F,et al. Molecular dynamics simulation for quantitative characterization of wettability transition on silica surface[J]. Journal of Materials Research and Technology,2022,19:4371-4380.
- [19]任俊豪,任晓海,宋海强,等.基于分子模拟的纳米孔内甲烷吸附与扩散特征[J].石油学报,2020,41(11):1366-1375.REN Junhao,REN Xiaohai,SONG Haiqiang,et al. Adsorption and diffusion characteristics of methane in nanopores based on molecular simulation[J]. Acta Petrolei Sinica, 2020,41(11):1366-1375.
- [20] ALTUNDAL O F,HASLAK Z P,KESKIN S. Combined GCMC,MD,and DFT approach for unlocking the performances of COFs for methane purification[J]. Industrial&Engineering Chemistry Research,2021,60(35):12999-13012.
- [21] YANG Z Y,YIN Z Q,XUE W Y,et al. Construction of Buertai coal macromolecular model and GCMC simulation of methane adsorption in micropores[J]. ACS Omega, 2021, 6(17):11173-11182.
- [22] ZENG K C,LU T J,JIANG P X,et al. Methane adsorption capacity measurement in shale matrix nanopores at high pressure by low-field NMR and molecular simulation[J].Chemical Engineering Journal,2022,430(Part 4):133151.
- [23] ZHANG D C,TANG H,ZHANG X G,et al. Molecular simulation of methane adsorption in nanoscale rough slits[J]. Journal of Natural Gas Science and Engineering,2022,102:104608.
- [24]温怡静,张博,陈晓霏,等.多孔炭吸附剂的乙烯-乙烷选择性反转机制[J].化工学报,2021,72(9):4768-4774.WEN Yijing,ZHANG Bo,CHEN Xiaofei,et al. Selectivity reversion mechanism of porous carbon for ethane-ethylene separation[J]. Journal of Chemical Industry and Engineering(China),2021,72(9):4768-4774.
- [25]张禹佳,徐俊波,唐晓津,等.烷基化反应混合物在Y型分子筛中吸附及反应失活机理的分子模拟[J].石油学报(石油加工),2020,36(1):86-94.ZHANG Yujia,XU Junbo,TANG Xiaojin,et al. Simulation of multi-component adsorption and deactivation mechanism of alkylation reaction in zeolites[J]. Acta Petrolei Sinica(Petroleum Processing Section),2020,36(1):86-94.
- [26] NATH S K,DE PABLO J J,ESCOBEDO F A. On the simulation of vapor-liquid equilibria for alkanes[J]. The Journal of Chemical Physics,1998,108(23):9905-9911.
- [27] DARDEN T, YORK D, PEDERSEN L. Particle mesh Ewald:An N-log(N)method for Ewald sums in large systems[J]. The Journal of Chemical Physics,1993,98(12):10089-10092.